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Abstract—Federated Learning (FL) has become a common
method for edge devices. Due to the limited energy capacity of
edge devices, and the vulnerability of FL to malicious attacks
from edge devices, vanilla FL still faces several challenges in edge
computing, including energy consumption, model heterogeneity,
and malicious behavior. To address these challenges, we propose
a multi-granularity grouping-based federated learning (MG²FL),
which groups and aggregates edge devices with low communica-
tion energy consumption and latency to reduce communication
costs. Additionally, we introduce a multi-granularity guidance
mechanism and a credit model to enhance model accuracy while
ensuring security. Experimental results show that compared to
the traditional FL algorithms, MG²FL achieves a 5.6% increase
in accuracy, with the highest accuracy improvement reaching
11.1% in the presence of malicious edge devices.

Index Terms—Edge devices, federated learning, balanced
graph partitioning, multi-granularity guidance, credit model.

I. INTRODUCTION

With the emergence of edge devices such as unmanned
aerial vehicles (UAVs) and mobile robots, these edge de-
vices have found extensive applications in various fields such
as scene understanding, emergency search, and urban target
tracking [1]–[4]. To achieve autonomous operations in these
applications, edge devices in the scene need to make real-
time decisions, based on intelligent analysis of collected data.
Due to the high requirements of bandwidth and latency for
raw data transmission, traditional centralized machine learning
approaches are not suitable for real-time applications on
edge devices [5]. In contrast, federated learning (FL), as a
distributed machine learning method, is more suitable for edge
devices since it transmits parameters, rather than raw data [6].

However, vanilla FL still faces several challenges, especially
in the field of edge computing. (i) Energy consumption.
Communication between certain edge devices leads to high
energy consumption. The participation of a large number of
edge devices in FL increases the frequency of communication,
leading to higher energy consumption, thereby causing envi-
ronmental degradation. (ii) Model heterogeneity. The datasets
used by edge devices for different tasks may have different
granularities, and the models on different edge devices may
also vary. This heterogeneity increases the difficulty of model
aggregation. (iii) Malicious behavior. Due to the openness
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Fig. 1: MG²FL in green edge computing systems.

of edges, there is a possibility of malicious behavior where
edge devices upload incorrect parameters, which undermines
the accuracy of the model aggregation.

Some papers have focused on reducing FL energy con-
sumption, such as Yang et al. in [7] proposed an iterative
algorithm to minimize the total energy consumption of local
computation and wireless transmission. Quoc-Viet Pham et
al. in [8] introduced the E2FL algorithm for energy reduc-
tion in FL among drones. Others have considered only the
heterogeneity of models or datasets, such as Cai et al. in
[9] proposed a multi-granularity guidance FL to enhance
performance. The above works didn’t solve the previous three
challenges comprehensively.

In this paper, we propose a multi-granularity grouping-based
federated learning approach (MG²FL). The main contributions
of this paper are summarized as follows:

• Considering reducing communication energy consump-
tion and latency (referred to as communication overhead
in the following text), the MG²FL utilizes balanced graph
partitioning to group edge devices. Further, we design a
guiding method among models with different granulari-
ties to enhance model performance.
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• The MG²FL incorporates a credit model, which considers
dynamically changing credit scores and selects the edge
devices with the highest credit score as leaders for each
group. The global model is then aggregated by the
leaders. This approach significantly improves security.

• Extensive experiments demonstrate that MG²FL improves
models’ accuracy by 2.7% to 5.6%. Our approach strikes
an effective balance between model performance and
model overhead, resulting in an improvement of 3.9%
to 11.1% on the final trade-off objective.

II. SYSTEM ARCHITECTURE AND MODEL

A. System Architecture
Fig. 1 shows the framework of MG²FL, which contains

multiple edge devices E = {E1, E2, ..., En}. The scale of
models and granularity of datasets owned by these edge
devices could be heterogeneous. In this paper, we consider
two different models and two different granularity levels of
datasets. The models are denoted as M = {M1,M2, ...,Mn},
which can be divided into big-scale model Mb and small-
scale model Ms. Similarly, the parameters of the model are
represented as W = {w1, w2, ..., wn}.

Generally, larger-scale models often have higher learning
capabilities, while smaller-scale models exhibit the opposite
trend [9]. Therefore, we divide all edge devices into two types:
small-scale edge devices with coarse-granularity data Ec and
large-scale edge devices with fine-granularity data Ef .

B. Communication Latency Model
During each iteration of FL, all edge devices upload their

local training model parameters to the central server, while the
FL server broadcasts the global model to each edge device.
Communication latency is inevitable during the process of
uploading and downloading data. Communication latency is
generally divided into propagation latency and transmission
latency, and the transmission latency is related to the size of
the data model and the transmission power, which will be con-
sidered when calculating the transmission energy consumption
in the next section. Therefore, we only consider propagation
latency in communication latency. The propagation latency
from edge device Ei to edge device Ej is calculated as
tlatencyij = dij/v, where dij is the distance between edge de-
vice Ei and edge device Ej , and v represents the propagation
speed of the signal [10].

C. Transmission Energy Consumption
In FL, data transmission leads to energy consumption. From

the Shannon formula [11], we express the data transmission
rate between edge device Ei and Ej , i.e. rij , as

rij = Bij log2(1 +
gijpij
N0Bij

), (1)

where Bij represents the bandwidth between two edge devices,
N0 is the power spectral density of Gaussian noise, gij is
the channel gain between edge device Ei and Ej , and pij
denotes the transmission power. Communicating operations
will happen in model aggregation and model guidance. If the
transmission data size is d, the transmission time is Tij =

d/rij . Then the transmission energy consumption between
edge device Ei and edge device Ej is Etrans

ij = pijTij .

D. Guidance Ability Model
As mentioned in Section II-A, there are two types of edge

devices, and we consider the higher granularity models as
guides, which guide the models trained with lower granularity
data to improve their performance.

We quantify the guiding ability of edge device Ei on edge
device Ej and represent it using the symbol πij :

πij = φ(wi, xj , yj)−Aj ,

φ(wi, xj , yj) =

∑|xj |
k=1 I{H·p(wi,xj,k)=yj,k}

|xj |
,

(2)

where p(wi, xj,k) denotes the output of model Mi on the input
data xj,k. yj,k represents the k-th label of edge device Ej and
H is the knowledge matrix that stores the relationship between
two types of data. It makes transforming one type of data to
another through using matrix H possible. φ(wi, xj , yj) is the
conversion accuracy of edge device Ei on the data xj . The
function I(·) is the indicator function and Aj indicates the
accuracy of edge device Ej on the local dataset.

E. Credit Model
In order to reduce the risk of malicious edge devices

providing fake quality assessment results, we score each edge
device. This score determines the weight of the edge device
in the global aggregation, the higher the score, the more
important its model parameters are. And the edge device with
the highest score will be selected as the leader to host model
aggregation. Specifically, we name this score as the credit
score of the edge device, which is related to the data size,
computing power of the edge device and model accuracy. The
credit score of edge device Ei is described as:

Ci = log
Di∑n
i=1 Di

+ fi + cIi , (3)

where cIi =
∑I

k=1 1/{1 + e− log(ck−1
i +ai)}, c0i = 0. Di, fi,

and I represent the data size, computing power, and current
iteration number of edge device Ei, respectively. The accuracy
of testing the model of i by the leader is denoted as ai.

It is noteworthy that the latest credit score is related to
its learning performance and accumulative credit score. To
achieve normalization in the credit score calculation, a sigmoid
function is employed. If an edge device performs well in
previous training iterations, it will not be discarded due to poor
performance in a single iteration. When the edge devices in
every group send their model parameters to the group leader, it
will validate the local updates with the test dataset. Afterward,
the edge device’s credit score will be obtained by the validation
accuracy and its historical credit score.

F. Problem Formulation
In this paper, we investigate multi-granularity data FL with

energy and latency requirements under security constraints.
We aim to reduce the communication overhead of FL through
grouping while improving the model accuracy using multi-
granularity guidance, all while adhering to security constraints.
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Fig. 2: The framework of multi-granularity grouping-based FL.

Our ultimate goal is to achieve an ideal model that strikes a
balance between performance and overhead. We illustrate the
problem by taking the k-th group sk as an example.

max
1

|sk|
∑
i∈sk

[Ai −Π(i, j)] s.t. j ∈ N(i), (4)

where Π(i, j) means the function that calculates the commu-
nication overhead between edge device Ei and Ej , and N(i)
refers to all the connected edge devices to the edge device Ei.

To further simplify the objective function, we divide it into
two parts. First, edge devices with low communication latency
and energy consumption and high mutual guidance ability are
grouped into a group through a partitioning algorithm. Mean-
while, in order to ensure the training duration of each group,
the partitioning should be as even as possible. We employ the
partitioning method to achieve the following objectives:

min
∑
sk∈S

∑
i,j∈sk

eij s.t.
⋃

sk∈S
sk = E ,

⋂
sk∈S

sk = ∅, (5)

max
sk∈S

|Vsk | ≤ (1 + ε)

∑
sk∈S |Vsk |
|S|

, (6)

where eij denotes the weight of the edge between Ei and
Ej , and Vsk represents the sum of the weight of all the edge
devices within the group sk. The S in the equation means the
groups obtained after partitioning through the algorithm. The
ε is a hyperparameter to tune the imbalance of partition.

Furthermore, the model performance is enhanced within
each group using multi-granularity guidance. The training
process within the s group can be represented as follows:

min
∑
i∈s

[
1

|xi|

|xi|∑
k=1

Fi(Mi, xi,k, yi,k) + βζ(Mi,Mj)],

ζ(Mi,Mj) =

∑|xi|
r=1 ||σ(Mi, xi,r)− σ(Mj , xi,r)||2

|xi|
,

(7)

where σ(·) is the output of Deep Neural Networks (DNNs)
before the last dense layer, ζ(Mi,Mj) calculates the difference
between the two models. Fi(·) is the loss function of Ei.

III. MG²FL PROCEDURE

To reduce communication overhead in FL on heterogeneous
edge devices, we have developed a new collaborative learning
framework: MG²FL. More detailed information about the
MG²FL operation process is depicted in Fig. 2.
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Fig. 3: The graph construction and partition.

A. Test Training
Before grouping the edge devices, we need to have knowl-

edge of the performance metrics of the edge devices as well
as their guiding abilities between devices. At the beginning
of the system process, each edge device will train its model
using a local test dataset. Due to the limited size of the test
data, the model training process can be completed quickly.
The training time for edge device Ei will be stored on the
device and denoted by ti.

After the completion of model training, edge devices that
can communicate with each other will engage in model guid-
ance. To improve the performance of the model, we only allow
fine-granularity models to guide coarse-granularity models.
For ease of storage, the guidance ability parameters will be
stored in the guided edge device. Specifically, edge device Ej

will store the guidance ability parameters πij from adjacent
edge device Ei that provided guidance to Ej .

B. Graph Construction
As shown in Fig. 3, we model the edge devices network

as a weighted undirected graph G with nodes consisting of
{Ec, Ef} and edges {e12, e13, ..., e(n−1)n}, where edges denote
the communication overhead between edge devices.

Node weight: In order to minimize the communication
overhead of the system and ensure high guidance capability,
we hope to achieve load balancing among different groups.
Hence, we set the weights of nodes as the training time of
each edge device. However, using only the training time of
the first test is not accurate. Therefore, in the setting of node
weights, we also consider the size of the edge device dataset
and its hardware performance. So we define the weight of edge
device Ei in the graph as Wi = (γti +

1
1+e−Di/fi

)/2, where
γ is used to tune the influence of training time.

Edge weight: After grouping, we hope that the communica-
tion cost between edge devices within a group is low, and the
guidance ability between them is high. So, the weight of edges
eij in the graph is defined as the weighted sum of latency,
energy consumption, and guidance ability between the edge
devices within a group.

eij = ν
1

πij
+ ςtlatencyij + τEtrans

ij , i > j (8)

where ν, ς and τ are hyperparameters that adjust the relative
importance of three distinct attributes.
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C. Graph Partitioning
After defining the graph G, we adopt the balanced graph

partitioning algorithm KaHyPar [12]. It is a multi-level graph
partitioning framework that utilizes graph coarsening, initial
partitioning, and local search algorithms. The goal of this
partitioning algorithm is to achieve a balanced partitioning
among groups while cutting the edges with the highest
weights. By introducing the definition of edge weights, this
algorithm ensures that edges with weak guiding abilities and
high communication overhead are reduced, thus ensuring that
the abilities and overhead among edge devices within each
group meet the optimization objectives.

We will calculate the credit score of each edge device
according to Eq. (3), and temporarily select the edge device
with the highest credit score as the leader, responsible for
global graph partitioning.

D. Multi-Granularity Guidance in FL
The initial model parameters are stored on each edge device.

• Local model training: Based on the initialized model
parameters, edge devices access the latest model and
execute local training. Specifically, the edge device in
every training group will train the local model based on
its raw data so that the expectation of a mini-batch from
every edge device’s local dataset is minimized.

• Local model guidance: After completing the local model
training, each edge device Ei will select the edge device
with the highest πij from its local storage for model
guidance, thus improving the model performance. The
edge device Ei performs parameters updates as:

wi = wi − η ▽ ζ(Mi,Mj),

s.t. j = argmax πij , j ∈ N(i),
(9)

where η means the learning rate in the update process.
This process only occurs in the later stage of the system,
aiming of ensuring that the models used for guidance are
mature enough to guide models of guided edge devices.

E. Leader Selection Based on Credit Score
As shown in Fig. 4, during the local model aggregation

process, the leader of group sk performs weight model ag-
gregation locally to obtain the local model parameters wsk ,
where the weight of each edge device in the model aggregation
depends on its credit score, like Eq. (10). The initial credit
score of each edge device is only related to the size of its

Algorithm 1: MG²FL Training process
Input: All edge devices’ initial local model’s

parameters wi.
Output: Global model’s parameters wG.

1 for each group sk do
2 for e = 1, 2, ..., E do
3 for each edge device Ei, i ∈ sk do
4 Ei solves the local problem and derives wi.
5 Transmit wi and Ai to the leader device.
6 end
7 After receiving wi and Ai, get Ci by Eq. (3).
8 The leader chooses the edge device with the

highest Ci as the new leader.
9 if (e ≥ βf ) and (e%θ == 0) then

10 Calculate wi by Eq. (9).
11 end
12 else
13 Calculate wsk by Eq. (10).
14 end
15 The leader broadcasts wsk to edge devices.
16 end
17 end
18 Each group’s leader aggregates to obtain wG.

local dataset, but the credit score of each edge device will be
recalculated in each iteration, as shown in Eq. (3).

wsk =
∑
j∈sk

Cjwj , sk ∈ S. (10)

Assuming local aggregation is synchronous, the aggregation
will be triggered when enough edge devices upload their
local models to the leader. Once local model aggregation is
completed, all local aggregation parameters will be uploaded
to the global model aggregation group to obtain global updates.
Due to the fact that our system has two models, we will select
two leaders for aggregation, with each leader being the edge
device with the highest credit score among those with the same
model in the group.

Before global aggregation, each group has two leaders,
each responsible for storing a different type of model. In
global aggregation, we divide all group leaders into two groups
according to their model types, and elect the edge device with
the highest credit score in each group as the leader of the
global aggregation group. These two leaders perform global
aggregation locally and generate a new global model.

At the end of each iteration, a new local aggregation leader
is selected. This ensures that each edge device has the potential
to become the leader, provided that the edge device has
the highest credit score. The FL mechanism is implemented
through local model aggregation by the leader. If the leader’s
behavior is malicious, the performance of the global model
will be greatly affected.

F. Global Model Aggregation and Group Leader Updating
In MG²FL, the edge device with the highest credit score

is selected as the leader, and all leaders form a new global

155

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 19,2025 at 08:03:58 UTC from IEEE Xplore.  Restrictions apply. 



MG²FL

Random

Spectral

Greedy84.41%

61.56%

68.26%
46.06% 36.54% 25.05%

13.53%
3.25%

12.36%

-2.19%
11.53% 12.64%

Standard deviation Avg. guiding ability

Avg. latency Avg. consumption

M
ap

pi
ng

 r
es

ul
t

M
ap

pi
ng

 r
es

ul
t
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aggregation group. Since the credit score of edge devices
considers both physical factors (i.e., data size) and training per-
formance, the leader update process abandons malicious edge
devices, further increasing the cost of attacks and enhancing
security and stability. The training process of MG²FL is shown
as Algorithm 1, where θ represents the frequency of guided
operations during the guidance period, E is the epoch number
and βf denotes the starting epoch of guided operations.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the MG²FL framework’s perfor-
mance, focusing on: performance and communication over-
head under different grouping schemes, the improvement
brought by guidance and the impact of malicious edge devices.

A. Dataset and Experiment Settings
In our experimental study, we employed the CIFAR100

dataset [13], which is characterized by two types of labels for
each sample. The dataset classifies common objects into 100
fine-granularity classes and 20 coarse-granularity classes, with
each coarse-granularity class including five fine-granularity
classes. We utilized the Wide-Resnet DNN model with multi-
ple convolutional layers for image classification. The batch
size was 64, and the local iterative number was set at 5.
In order to provide a more intuitive representation of the
evaluation metrics in our experiments, we map the evaluation
metrics to a range of 0 to 100 as mapping result.

B. Experiment Results
1) Grouping method analysis: We evaluate the impact

of different grouping methods, including random grouping,
greedy grouping, spectral clustering [14], and MG²FL, on
various system metrics. The grouping results are depicted
in Fig. 5, which presents four evaluation results: standard
deviation of computational power between groups, average
guiding ability, average latency, and average energy consump-
tion. From the graph, it can be observed that MG²FL ensures
similar computational capabilities among different groups
while achieving a minimum improvement of 25% in guidance
capability. Additionally, compared to methods with similar
latency, MG²FL reduces energy consumption by 12.64%. This
can be attributed to the graph partitioning technique, which
divides the system into groups by cutting high-weighted edges.

M
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pi
ng

 R
es

ul
t

(a) The influence of different at-
tention on the grouping results.

Random Spectral

Avg. guiding ability

Avg. latency

Avg. consumption

MG²FL Greedy

(b) The influence of different
numbers of groups on the model.

Fig. 6: The influence of hyperparameters on the model results.

By defining edge weights, this approach takes into account the
guidance capability, energy consumption and latency among
edge devices simultaneously.

2) Hyperparameters analysis: To meet these different re-
quirements for the model, we introduce hyperparameters in Eq.
(8) to dynamically adjust the attention of the model. In Fig. 6
(a), we present Case 1, which balances performance and over-
head, with hyperparameters set as ν = 0.3, ς = 0.3, τ = 0.3;
in Case 2, which prioritizes overhead, hyperparameters are
set as 0.2, 0.4, and 0.4; and in Case 3, which emphasizes
performance, hyperparameters are set as 0.6, 0.2, and 0.2. As
seen from the figure, we evaluate the standard deviation of
edge device performance (SD of EP), the average guidance,
latency and energy of the system for each group. We observed
that changes in weights affect the mapping result of various
metrics. Attributes that acquire higher weights tend to yield
better mapping result for those attributes.

We analyzed the impact of different numbers of groups on
the system, as shown in Fig. 6 (b). We found that regardless
of the number of groups, MG²FL consistently outperformed
the other methods. Specifically, the guiding capability initially
increased and then decreased with an increase in the number of
groups. This is because when the number of groups becomes
too large, the number of models of different granularities
within each group becomes too low, leading to a decrease in
guiding capability. However, energy consumption and latency
decreased with an increase in the number of groups. This
is because the larger the number of groups, the finer the
partitions, and thus more costly communication is forsake.

3) Performance analysis: Considering the significant impact
of multi-granularity guidance on model performance under
different grouping approaches, we analyze the performance
curves and evaluate other metrics. Fig. 7 (a) depicts the impact
of different grouping approaches on the guiding performance
of the MG²FL model. Firstly, it can be observed that we take
full advantage of heterogeneity, improving the performance
of the model by 6% using guidance at an epoch of 110.
Furthermore, it can be seen that the final performance of
MG²FL is 2.7% to 5.6% higher than the baseline. This is
because our grouping method strives to place edge devices
with strong guidance capability for Ei in the same group as
Ei while ensuring weight balance between groups, avoiding
the issue of decreased guidance effectiveness due to a shortage
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Fig. 8: Impact of malicious edge devices on MG²FL.

of edge devices in a group.

We further analyze the results, as shown in Fig. 7 (b),
where target is the evaluation metric to trade off accuracy,
communication overhead, and guidance. The greedy grouping
approach often exhibits an advantage in a specific metric.
Taking the grouping method that only considers overhead
as an example, although it has the lowest average energy
consumption, it fails to account for the guiding ability among
edge devices. Consequently, its model accuracy after guidance
is lower, resulting in its inferior performance compared to the
MG²FL framework in evaluation metrics that consider both
model performance and overhead.

4) Security analysis: We simulate attacks from malicious
edge devices from two perspectives: the number of malicious
edge devices and the degree of their malicious behavior. Fig.
8 (a) and Fig. 8 (b), respectively, show the impact of the
two malicious approaches on the performance of the proposed
MG²FL and the traditional FedAvg [15]. We observe that in
the presence of malicious edge devices, MG²FL consistently
outperforms FedAvg. Moreover, the performance gap between
MG²FL and FedAvg widens as the number of malicious nodes
or the severity of malicious behavior increases, with the largest
difference between the two methods reaching 11% and 6.6%.

After analysis, we attribute this result to the following
reason: When the number of malicious edge devices or the
severity of their behavior is low, their contribution to the
overall aggregation in FedAvg is minimal due to their low
weight. However, as the malicious behavior or the number of
edge devices increases, traditional FedAvg becomes more sus-
ceptible to the influence of malicious nodes, while in MG²FL,
the credit score ensures that weights of malicious edge devices
decrease, thereby preserving the model performance.

V. CONCLUSION

In this paper, we address the issue of high overhead in FL
among multi-granularity edge devices, enabling these edge
devices to efficiently perform heterogeneous FL tasks with
limited power resources and enhanced security. We propose a
novel method called MG²FL, which combines balanced graph
partitioning and multi-granularity guidance. Experimental re-
sults demonstrate that our approach outperforms other base-
lines in terms of performance and communication overhead.
Additionally, our method uses a credit model to mitigate the
impact of malicious edge devices on the FL results.
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